
Ann Oper Res (2010) 181: 661–681
DOI 10.1007/s10479-010-0800-4

RAMP for the capacitated minimum spanning tree
problem

Cesar Rego · Frank Mathew · Fred Glover

Published online: 19 October 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper introduces dual and primal-dual RAMP algorithms for the solution
of the capacitated minimum spanning tree problem (CMST). A surrogate constraint relax-
ation incorporating cutting planes is proposed to explore the dual solution space. In the
dual RAMP approach, primal-feasible solutions are obtained by simple tabu searches that
project dual solutions onto primal feasible space. A primal-dual approach is achieved by
including a scatter search procedure that further exploits the adaptive memory framework.
Computational results from applying the methods to a standard set of benchmark problems
disclose that the dual RAMP algorithm finds high quality solutions very efficiently and that
its primal-dual enhancement is still more effective.

Keywords Minimum spanning tree · Heuristics · Surrogate constraints · Scatter search ·
Tabu search · RAMP

1 Introduction

The capacitated minimum spanning tree (CMST) problem is fundamental to the design of
communication networks, and has been widely studied for its importance in practical appli-
cations. A classical application consists of finding a minimum cost design of a capacitated
centralized processing network where a central node of limited capacity must be linked via
a tree topology to a number of remote terminals with a specified demand. The CMST also
finds application in a variety of other settings in distribution, transportation and logistics

C. Rego (�) · F. Mathew
School of Business Administration, University of Mississippi, University, MS 38677, USA
e-mail: crego@bus.olemiss.edu

F. Mathew
e-mail: fmathew@bus.olemiss.edu

F. Glover
University of Colorado, Boulder, CO 80309-0419, USA
e-mail: fred.glover@colorado.edu

mailto:crego@bus.olemiss.edu
mailto:fmathew@bus.olemiss.edu
mailto:fred.glover@colorado.edu

662 Ann Oper Res (2010) 181: 661–681

(see Gavish 1982, 1991). The problem also provides a relaxation of the classical capaci-
tated vehicle routing problem, which is central to many other complex problems, including
the design of communications networks with topological ring structures (Klincewicz et al.
1998).

The classical CMST problem can be stated in reference to a complete undirected graph
G = (V0,A), whose vertex (node) set is represented by V0 = {0,1, . . . , n} and whose arc
set is represented byA = {(i, j)|i, j ∈ V ; i �= j}. Node 0 denotes a special node named root
with demand d0 = 0, and each node i ∈ V = V0\{0} has a specified integer demand di > 0.
A matrix C = (cij) is associated with A, where cij is a non-negative weight (distance or
cost) for arc (i, j) if there is link between nodes i and j . Otherwise cij is infinity. The
CMST problem consists in finding a minimum cost of a tree T spanning all nodes of G, so
that the sum of the demands in each subtree off the root node does not exceed a fixed integer
arc capacity Q. When all the nodes i ∈ V have the same demand the problem is referred
to as the homogeneous demand CMST problem. Similarly, when the nodes have different
demand the problem is referred to as the heterogeneous demand CMST problem.

In this paper, we address the CMST with heterogeneous demand. The CMST problem
has been shown to be NP-Complete (Papadimitriou 1978). Several formulations have been
developed for the problem. Similar to Gavish (1982) the CMST can be formulated as:

(P1) Minimize
n∑

i=0

n∑

j=1

cij xij (1)

subject to
n∑

i=0

xij = 1, j = 1, . . . , n (2)

n∑

i=0

yij −
n∑

i=1

yji = dj , j = 1, . . . , n (3)

djxij ≤ yij ≤ (Q − di)xij , i = 0, . . . , n; j = 1, . . . , n (4)

yij ≥ 0, i = 0, . . . , n; j = 1, . . . , n (5)

xij ∈ {0,1}, i = 0, . . . , n; j = 1, . . . , n (6)

which takes the form of a single-commodity flow problem. Binary variables xij equal 1 if
the arc (i, j) is in the solution, and 0 otherwise. Integer variables yij represent the amount
of flow through the arc (i, j) ∈ A. The objective (1) is to select a CMST having minimum
cost, or equivalently that minimizes the sum of the costs of arcs included in the solution.
The constraints of (2) ensure that each node j ∈ V is sourced by exactly one arc (i, j) from
some node i ∈ V0. Conservation of flow within the network is accounted for by (3) while (4)
assures that flow on an arc cannot exceed its capacity if the arc is open (chosen to belong to
the solution) and equals 0 if the arc is closed. In the case of unitary demands, a formulation
for the homogeneous-demand CMST is obtained by setting dj = 1 in problem P1.

Although numerous heuristic algorithms have been proposed for the CMST, the best
methods to date still have difficulty finding solutions of highest quality. Currently, the most
effective heuristic algorithms for the CMST are due to Amberg et al. (1996), Sharaiha et al.
(1997), and notably Ahuja et al. (2003). The next section gives a brief review of heuristic
algorithms for the CMST and a comprehensive review can be found in Mathew and Rego
(2006).

Ann Oper Res (2010) 181: 661–681 663

The relaxation adaptive memory programming (RAMP) approach is a relatively new
metaheuristic that has proved effective in the solution of a variety of difficult combinato-
rial optimization problems. The method incorporates principles of adaptive memory pro-
gramming as introduced in tabu search and takes advantage of mathematical relaxation
approaches to exploit primal and dual relationships. A description of the method and its
applications appears in Rego (2005).

Just as Memetic Algorithms refer to hybrid methods composed of evolutionary meth-
ods and local search, RAMP refers to hybrid methods composed of mathematical relax-
ation methods and adaptive memory programming. In the same way that numerous chal-
lenges arise in establishing an effective interaction between evolutionary processes and lo-
cal search, a variety of intriguing challenges present themselves in establishing an effective
combination of mathematical relaxation and adaptive memory. Grünert (2002) extends the
classical Lagrangian-based heuristic framework with tabu search adaptive memory with the
purpose of restricting the neighborhood space to some constructive projection method. With
the same purpose of reducing the neighborhood size, Yagiura et al. (2006) use informa-
tion from Lagrangian relaxation for fixing variables in an adaptive memory local search
algorithm. A more elaborate integration of mathematical relaxation and adaptive memory is
developed in Caserta (2007), which explores primal-dual interactions by cross-linking tabu
search and Lagrangian-based subgradient search within a RAMP framework.

In this paper we identify ways we have been able to exploit the RAMP framework to
produce a method that proves particularly useful for solving CMST problems. Specifically,
we propose two RAMP algorithms for the CMST problem aimed at exploring different
levels of sophistication. The simpler approach considers a dual-based RAMP variant that
employs a surrogate constraint relaxation to create and project dual solutions onto the primal
feasible space. A more advanced RAMP variant incorporates a scatter search procedure to
create a primal-dual RAMP algorithm (PD-RAMP). Adaptive memory is used in integrating
the components of both methods.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review al-
gorithms for CMST. Section 3 gives an overview of the RAMP method. Sections 4 to 7
describe the various component methods of the proposed dual and primal-dual RAMP algo-
rithms, followed by their implementation details in Sect. 8. Section 9 provides a computa-
tional analysis. Summary and concluding remarks are presented in Sect. 10.

2 Previous approaches for CMST

The CMST problem has been widely studied over the last four decades with proposals of
different formulations and a variety of specialized algorithms. Greedy constructive meth-
ods are the first to appear in the literature. For about thirty years a simple savings heuristic
proposed by Esau and Williams (1966) had been a standard for providing approximate so-
lutions to the CMST. Starting from a solution with all nodes directly connected to the root,
the method operates by disconnecting a node from the root at each step and reconnecting it
to another node so as to obtain a maximum possible savings in cost. The process is repeated
until no further improvement is possible. By contrast, the constructive method of Elias and
Ferguson (1974) begins with a solution for the MST relaxation of the CMST and iteratively
attempts to satisfy each of the capacity constraints using the minimum increase in cost. This
heuristic was later used by Gavish (1983) as a heuristic projection method for a Lagrangian
relaxation approach.

A branch-and-bound algorithm with Lagrangian relaxation was presented by Malik and
Yu (1993), which makes use of a stronger set of valid inequalities aimed at getting better

664 Ann Oper Res (2010) 181: 661–681

bounds during the optimization process. An interesting formulation for the homogeneous
demand CMST was proposed by Gouveia (1995). For a problem with n nodes, the formula-
tion is bounded by O(n) constraints, making it more suitable for relaxation procedures than
more traditional formulations (such as (P1)) involving O(n2) constraints. Gouveia also pro-
posed Lagrangian relaxation schemes that improved bounds by Gavish (1985) across several
problem instances, especially those having smaller levels of arc capacity Q. Hall (1996) ap-
plied polyhedral methods to CMST and improved lower bounds for problem instances with
root node in the center. A more powerful approach that undertakes to generate improved
lower bounds has recently been considered by Uchoa et al. (2008).

In the latter half of the 90’s simulated annealing and tabu search metaheuristics came
into play to provide significantly better results than previous approaches. The neighborhood
structure used during the search has a major influence on the performance of these algo-
rithms. Amberg et al. (1996) had surprising success with two very basic neighborhoods: a
shift neighborhood that transfers a node from one sub-tree to another, and a swap neighbor-
hood that interchanges nodes between subtrees. The authors proposed and tested these two
neighborhoods within a simulated annealing approach and a tabu search approach that were
used to improve initial feasible solutions provided by the Esau-Williams heuristic. Sharaiha
et al. (1997) proposed another tabu search approach based on a subtree neighborhood struc-
ture, which splits the current spanning tree into two subtrees and reconnects them by adding
an arc different from the one that had been deleted in the original tree. The reconstruction
of the new spanning tree may involve some arc reversals in order to maintain proper direc-
tions of flow. These neighborhoods that modify at most two subtrees are generally called
two-exchange neighborhoods.

Patterson et al. (1999) proposed an adaptive reasoning technique drawing on principles
of adaptive memory programming of the type used in tabu search and constructive neigh-
borhood search processes. In their approach, constructive neighborhoods are obtained by
iteratively executing Esau-Williams heuristic subjected to current tabu restrictions, which
are probabilistically modified at each iteration of the method.

The state-of-the-art in the literature is provided by a sequence of two papers by Ahuja et
al. (2001, 2003). In the initial paper, the authors proposed two multi-exchange neighborhood
structures by generalizing the node-based and tree-based two-exchange neighborhood struc-
tures previously proposed by Amberg et al. (1996) and Sharaiha et al. (1997), respectively.
The generalization of these methods considers larger neighborhoods that may propagate
over all sub-trees in the solution, the size of which grows exponentially with problem size,
making them extremely costly to evaluate even for problems of modest size. To overcome
this limitation, the authors consider a reduced neighborhood using the concept of an im-
provement graph. An arc in the improvement graph with respect to a feasible solution repre-
sents an elementary move that transfers a node (or subtree) to join another subtree, with the
cost of the arc being the change in cost associated with the move. Hence, a sequence of arcs
tracing a node-simple path or cycle in the improvement graph can represent multi-exchanges
of nodes or subtrees of the original graph. To evaluate the best multi-exchange move a tech-
nique based on shortest path constructions is used. The authors implemented tabu search as
well as a greedy randomized adaptive search procedure (GRASP) for both neighborhoods
and report the results from all four algorithms. Between the four different approaches, the au-
thors obtained the best known solutions for all the benchmark problems. In the second paper,
the authors proposed a unified neighborhood that integrates the node-based and tree-based
multi-exchange neighborhoods to form a composite neighborhood along with a GRASP
procedure. This approach further improved solutions for 36% of the standard benchmark
problems.

Ann Oper Res (2010) 181: 661–681 665

3 The RAMP method: conceptual foundations and overview

Broadly speaking, adaptive memory programming (AMP) refers to processes using flexi-
ble memory structures and associated strategies for exploiting them as originally in the tabu
search method (see, e.g., Glover 1989a, 1989b, 1996). AMP has been the key to many impor-
tant algorithmic developments and appears as a major strategy in the creation of enhanced
hybrid approaches utilizing tabu search components. Notable instances of such methods are
provided by recent developments in scatter search and its generalization, the path-relinking
approach. Together with RAMP, these algorithms form a class of methods generally called
adaptive memory metaheuristics. While scatter search and path-relinking are typically pri-
mal methods that explore the solution space of the original problem, the RAMP method
focuses on exploring the dual space associated with a relaxed problem and establishing
primal-dual connections to overcome the duality gap.

Conceptually, the RAMP method is founded on the following premises:

(P1) The solution of appropriate relaxation dual problems affords relevant insights for the
creation of adaptive memory structures by gathering information that cannot be ob-
tained by primal based approaches.

(P2) The use of adaptive memory strategies that affect both sides of the primal-dual connec-
tion provides a useful means for bridging the duality gap that exists in combinatorial
optimization.

(P3) A method that effectively gathers information from the primal and dual sides fulfills
the adaptive memory programming concept of a method that learns as it progresses
and may suitably provide a unified framework for solving difficult combinatorial opti-
mization problems.

Operationally, the RAMP method comprises two fundamental components, a dual search
that explores the solution space of an associated relaxation problem and a projection method
that projects a dual feasible solution onto the primal solution space. The dual component in-
cludes a relaxation technique and a method for determining new dual values (weights or
multipliers) for the relaxation. The projection method is designed to incorporate a heuristic
improvement process to create enhanced primal feasible solutions. Adaptive memory is em-
ployed to take advantage of information generated from the dual and primal components.
On one hand, the dual approach coupled with the associated projection method provides
a means to create primal solutions by generating paths from the dual to the primal feasible
space. On the other hand, the primal approach influences the search for new dual solutions by
producing the feasible solutions and associated information for launching this search. Any
time a primal search is completed a new relaxation problem is created to initiate another
dual search. The structure of each relaxation problem depends on the current state of the
search and is devised by appropriate memory structures that leverage the oscillation process
between primal and dual spaces. The method alternates between the primal and the dual
components until a specified stopping criterion is met. In advanced forms of the method,
primal and dual solutions are combined to generate offspring solutions in an evolutionary
fashion, providing another device to create adaptive memory structures.

From an implementation perspective, the RAMP method is organized around four main
component methods that can be briefly described as follows:

An Adaptive Memory Relaxation Method—Create a relaxation problem based on the
current relaxation parameters and the selected constraints set and solve it to obtain a dual
solution and associated bound. Depending on the complexity of the relaxation problem,
the underlying solution method can be either exact or heuristic. Within these options, the

666 Ann Oper Res (2010) 181: 661–681

method may encompass multiple levels of relaxation as exemplified by the cross-parametric
relaxation method (Rego 2005).

An Adaptive Memory Projection Method—Apply a projection method to transform in-
feasible solutions into feasible and enhanced solutions. The method may be used to project
dual solutions onto the primal solution space or to achieve feasibility for infeasible solutions
encountered in search paths originating from primal feasible solutions. A variety of possibil-
ities exist to create projection methods that take advantage of adaptive memory—see Rego
(2005) and Glover (2005) for examples of those options.

An Adaptive Weighting Update Method—Compute weights for the dual search based
upon memory structures that appropriately account for the effect of primal-dual interactions.

An Adaptive Solution Combination Method—Combine solutions originating from pri-
mal and dual searches in order to generate new solutions containing information from both
search spaces.

The specific design of these methods for the capacitated minimum spanning tree problem
is given in the following sections.

4 Adaptive memory relaxation method

In our design for the CMST the adaptive memory relaxation method uses surrogate con-
straint relaxation combined with cutting planes. The 2n-constraint formulation proposed
by Gouveia (1995) for the homogeneous-demand CMST is convenient for a surrogate con-
straint approach due to its reduced number of constraints. We first generalize this formu-
lation in Sect. 4.1 to solve the general CMST with heterogeneous demand. In Sect 4.2 we
discuss important properties of a basic surrogate relaxation that led us to the development
of the enhanced surrogate relaxation with cutting planes developed in Sect. 4.3.

4.1 Generalized 2n-constraint formulation for CMST

As shown earlier the classic formulation for the CMST problem (Gavish 1982) involves n2

variables and 2n2 constraints (not counting the basic assignment and bounding constraints),
which leads to rather large integer programming problems even for moderate values of n.
Gouveia (1995) introduced an alternative formulation that involves n2Q variables but only
2n constraints. This feature, combined with the ability to produce the same lower bound as
the LP relaxation of classical CMST formulations, makes Gouveia’s formulation advanta-
geous for surrogate relaxation. While originally specialized for the homogeneous-demand
variant of the CMST problem, we developed a generalization of this formulation to tackle
the more general heterogeneous-demand CMST problem:

(P2) Minimize
n∑

i=0

n∑

j=1

Q−di∑

q=dj

cijZijq (7)

subject to
n∑

i=0

Q−di∑

q=dj

Zijq = 1, j = 1, . . . , n (8)

n∑

i=0

Q−di∑

q=dj

qZijq −
n∑

i=1

Q−dj∑

q=di

qZjiq = dj , j = 1, . . . , n (9)

Zijq ∈ {0,1}, i = 0, . . . , n;

Ann Oper Res (2010) 181: 661–681 667

j = 1, . . . , n; q = dj , . . . , (Q − di) (10)

The three dimensional binary variable Zijq indicates the existence (Zijq = 1) or absence
(Zijq = 0) of a specific quantity of flow q on an arc (i, j) associated with the solution for
CMST. Note that in the original formulation q ranges from 1 to (Q − di), where di is the
demand of node i. In our general case q is allowed to take any value from dj to (Q − di),
as the minimum amount of flow on an arc has to equal the demand of the node it serves.
The constraints of (8) ensure that each node j ∈ V is sourced by exactly one arc (i, j) from
some node i ∈ V0, while conservation of flow is ensured by the constraints of (9). Also note
in (9) that the RHS is modified to be dj instead of 1.

This formulation forms the basis of the surrogate relaxation problem discussed next.

4.2 The basic surrogate constraint relaxation

We begin by discussing some special properties of the basic surrogate relaxation that are
relevant for an effective design of a dual RAMP approach. The constraint set (9) is much
harder to satisfy than (8), hence a surrogate constraint (9′) is formed by creating a linear
combination of the constraint set (9) using a nonnegative vector of weights w. If the variables
Zijq are kept integer, the problem of finding a feasible solution to the surrogate equality
constraint itself corresponds to the well-known subset sum problem, which is NP-Complete,
both for integer coefficients (Garey and Johnson 1979) as well as for real coefficients (Orús
2005). In the general case the subset sum problem may not have a solution. In the present
instance, however, the surrogate constraint derives from a linear combination of the flow-
conservation constraints system, which must have a binary solution for any possible CMST
problem, and hence the associated subset sum problem is guaranteed to have a solution.
Moreover, optimizing over constraints (8) and (9′) for an optimal binary solution can be
a complex task; therefore the integrality constraints are also relaxed. These considerations
lead to the following surrogate problem:

(Sw) Minimize
n∑

i=0

n∑

j=1

Q−di∑

q=dj

cijZijq (7)

subject to
n∑

i=0

Q−di∑

q=1

Zijq = 1, j = 1, . . . , n (8)

n∑

j=1

wj

⎡

⎣
n∑

i=0

Q−di∑

q=dj

qZijq −
n∑

i=1

Q−dj∑

q=di

qZjiq − dj

⎤

⎦ = 0, (9′)

0 ≤ Zijq ≤ 1, i = 0, . . . , n; j = 1, . . . , n;
q = dj , . . . , (Q − di) (11)

The structure of this surrogate problem has some interesting characteristics. It corresponds
to a semi-assignment problem with an additional (equality) knapsack constraint. It is easy to
show that the semi-assignment problem alone satisfies the integrality property and therefore
admits an integer (all binary) optimal solution. Such a solution can be simply determined
by selecting the minimum cost variable with a non-zero coefficient in the corresponding
assignment constraint. If such a solution also satisfies the knapsack constraint, the optimal
solution for the complete surrogate problem will be all binary. Otherwise, to satisfy the

668 Ann Oper Res (2010) 181: 661–681

knapsack constraint, some variables will need to take fractional values. Since every variable
appears in exactly one of the assignment constraints, assigning one variable a fractional
(non-integer) value necessarily requires another variable to take a fractional value in the
same constraint. Clearly, relaxing the integrality requirement of variables in an assignment
constraint can only increase (or possibly not change) the cost of the solution. Because it is
always possible to satisfy the knapsack constraint by relaxing the integrality of variables
that lie in a single assignment constraint, an optimal solution for this surrogate problem
is either binary or contains fractional values for exactly two variables. A binary optimal
solution is only possible, however, in a very remote situation where the relaxation problem
has no integrality gap. (The integrality gap here is defined to be the worst-case difference
between the cost of the IP solution and that of its LP relaxation solution.) Consequently,
a solution to the present surrogate problem typically contains n − 1 variables set to 1, two
variables set to fractional values that together sum to 1, and all remaining variables set
to 0.

4.3 An enhanced surrogate constraint relaxation

In the context of the RAMP approach we are mostly interested in relaxations that can pro-
duce diverse dual solutions and that at the same time correspond to potentially good starting
points for the projection/improvement method. In our algorithm this is achieved by extend-
ing the basic surrogate problem with appropriate valid inequalities for the CMST. By chang-
ing the problem structure we must give up the convenience of having solutions with only
two variables taking fractional values and therefore a somewhat more complex projection
method is needed to create primal feasible solutions. We will come back to this issue in
Sect. 5 when describing the projection and improvement methods. We first consider the
type of valid inequalities used to meet the goal of generating good and diverse dual solu-
tions.

Valid inequalities (or cutting planes) have been extensively used to facilitate the solu-
tion of integer programming problems. Such inequalities, which seek to reduce the solution
space while not “cutting off” (excluding) the optimal solution, are generally more effec-
tive when problem specific. Their usefulness depends on the problem structure, the type of
formulation, the solution method, and associated strategies that determine which and when
the available valid inequalities should be added. Commonly, valid inequalities are added di-
rectly to the LP relaxation of the integer linear programming (ILP) problem, which is used
explicitly or implicitly in Lagrangian-based methods, or within branch-and-cut algorithms.
Several classes of these inequalities involve very large (sometimes exponential) number
of constraints and therefore their use requires implicit generation schemes or specialized
separation methods, generally called relax-and-cut methods. In cases where the separation
process is computationally infeasible, heuristic methods are often used to ensure polyno-
mial time separations. See for example Gavish (1985), Malik and Yu (1993), Zhang (1993),
Gouveia (1995), and Hall (1996) for an overview of valid cuts for the CMST and associated
solution methods.

Our purpose in using valid cuts is to create a surrogate relaxation with a convenient
structure for a dual search within the RAMP algorithm rather than striving to close the
duality gap. Also, we want to keep the relaxation problem as simple as possible for a fast
computation of the corresponding optimal solution. Bearing these objectives in mind, and
conducting experimental analyses with different sets of inequalities derived from Gouveia
(1995) and Hall (1996), we devised the following enhanced surrogate relaxation:

Ann Oper Res (2010) 181: 661–681 669

(S+
w) Minimize

n∑

i=0

n∑

j=1

Q−di∑

q=dj

cijZijq (7)

subject to
n∑

i=0

Q−di∑

q=dj

Zijq = 1, j = 1, . . . , n (8)

n∑

j=1

wj

⎡

⎣
n∑

i=0

Q−di∑

q=dj

qZijq −
n∑

i=1

Q−dj∑

q=di

qZjiq − dj

⎤

⎦ = 0 (9′)

n∑

i=1

n∑

j=1

Zijq ≤
⌊∑n

i=1 di

q + 1

⌋
, q = �Q/2� , . . . ,Q − 1 (12)

n∑

i=1

n∑

j=1

Q−di∑

q=dj

Zijq ≤ n −
⌈∑n

i=1 di

Q

⌉
, (13)

0 ≤ Zijq ≤ 1, i = 0, . . . , n; j = 1, . . . , n;
q = dj , . . . , (Q − di) (11)

Inequalities (12) derive directly from the use of the three-index Zijq variables and have the
particular advantage of adding only �Q/2� − 1 constraints to the relaxation problem. In
Gouveia (1995) the variant of these inequalities for the homogeneous-demand case were
stated to be most effective at improving the lower bounds when added to a Lagrangian
relaxation of the original formulation. We have found a similar impact when adding our
generalization of these inequalities for the heterogeneous-demand case as cutting planes to
our surrogate relaxations. Inequalities (13), which set a lower bound on the number of arcs
incident to the root, denote a special case of the general bin-packing constraints that were
also found useful in Hall (1996). We found empirically that these cutting planes when in-
corporated in the RAMP algorithm not only improve the diversification of the dual solutions
being generated but also have a significant impact on the quality of the primal solutions.
Because these constraints can be massive in number, implicit generation is used in order to
keep the problem size under control.

The solution for the surrogate problem provides a lower bound for the optimal value of
the original CMST problem and a starting solution for the projection method.

5 Adaptive memory projection method

The solution provided by the dual (or relaxation) method is usually infeasible for the original
problem, and hence some type of projection method is necessary to project solutions from
the dual solution space onto the primal feasible space. In the context of the RAMP method
this is typically achieved by some sort of heuristic process aimed at finding enhanced fea-
sible solutions in the vicinity of the infeasible one. In the present implementation a dual
solution is first projected into primal feasible space with a greedy constructive approach and
then improved using a simple tabu search procedure. Similar type of infeasibility is also
likely to occur with the solutions generated by the adaptive solution combination method
discussed later; hence the situation is handled the same way.

5.1 Projection

The greedy approach is a three step process to achieve feasibility. First violations of the
integrality constraint are handled, then a tree structure for the solution is ensured and finally

670 Ann Oper Res (2010) 181: 661–681

arc capacities are adjusted to overcome possible demand violations. If more than n vari-
ables are set to non-zero values in the dual solution, due to the presence of the constraint
set (8) in the surrogate problem we know that integrality is violated. With the objective of
setting exactly n variables to 1 and the rest to 0, we order all non-zero variables so that
c1/μ1 ≤ c2/μ2 ≤ · · · ≤ ck/μk ≤ · · · ≤ cr/μr , where ck denotes the objective function coeffi-
cient of the variable of order k and μk denotes the corresponding coefficient in the surrogate
constraint. The variables whose coefficients represent the n smallest ratios are set to 1 while
the others are set to 0.

Relaxation of the constraint set (9) may result in the presence of cycles in the solution in-
stead of producing the desired tree structure. Such cycles are eliminated by closing the most
expensive arc in a cycle and connecting the corresponding set of nodes to the root by an arc
of minimum cost. Finally, the capacity constraints are satisfied by using a method analogous
to that by Elias and Ferguson (1974). The sub-trees that violate capacity constraints are it-
eratively fixed. This is done by strategically closing an arc to create a disjoint sub-tree and
then opening an arc between the root node and the this disjoint sub-tree with a minimum
possible increase in cost. This process is repeated until all arcs in the sub-tree have flow that
does not exceed Q. The resulting solution is a primal feasible solution. This solution is then
subjected to a tabu search procedure for further improvement.

5.2 Improvement

The improvement component of the adaptive projection method is restricted to a simple tabu
search procedure that operates on each solution projected onto the primal feasible space with
the objective of finding an enhanced feasible solution. In this framework, adaptive memory
is chiefly maintained by two elements: (1) tabu restrictions (deriving from moves performed
in previous iterations of the tabu search), and (2) the structure of the dual solution (provided
by the adaptive memory relaxation method). This memory additionally takes account of
the values of the lower and upper bound maintained throughout the search. The appropriate
integration of this information makes up the memory structures used to drive the search back
to the dual space.

An important aspect of a tabu search implementation is the neighborhood structure used
to explore the solution space during iterations of the method. In contrast to the neighbor-
hood structures used by Amberg et al. (1996), Shariaha et al. (1997) and Ahuja et al. (2003),
we employ an oscillating neighborhood structure that proves well suited for use with the
tabu search method to explore the neighborhood space efficiently and effectively. Following
a multi-neighborhood design used in scheduling by Glover and McMillan (1986), the os-
cillating strategy consists of alternating between node-based and tree-based neighborhoods
whenever one neighborhood fails to improve the best available solution for a fixed number of
iterations. Accordingly, short-term memory is used within each neighborhood exploration
by employing classical tabu restrictions on the moves to inhibit the possibility of cycling
and add vigor to the search, while critical event memory, which keeps track of the number
of successive failures of each neighborhood, is used to control the oscillation process. The
method stops when both neighborhoods fail to produce an improvement of the current best
local optimum.

6 Adaptive weighting update method

A fundamental component of the RAMP method is the interaction between the primal and
dual components. Rather than relying solely on searching the primal solution space as in

Ann Oper Res (2010) 181: 661–681 671

customary metaheuristic approaches or strictly searching the dual space as in traditional
relaxation-based approaches, the RAMP method focuses on developing search paths in a
global primal-dual space. While the adaptive projection method develops paths from the
dual space to the primal space the adaptive weighting update method is concerned with
projections in the opposite direction, from the primal to the dual space. The aim is that
both types of projections are guided by the information gathered from both spaces that best
reflects the state of the search.

In the present RAMP implementation adaptive weighting is conceived by means of the
subgradient method. Subgradient optimization (Polyak 1969) is a standard approach used to
solve the Lagrangian dual. It has also been used successfully for finding weights to surrogate
constraints (e.g. Karwan and Rardin 1984; Lorena and Narciso 1999). Using the surrogate
problem described in Sect 4.3, dual solutions for each iteration within the RAMP framework
are generated as follows. For the set of constraints (9) that have been relaxed, we compute a
gradient vector G as

Gj = dj −
(

n∑

i=0

Q−di∑

q=dj

qZijq −
n∑

i=1

Q−dj∑

q=di

qZjiq

)
, j = 1, . . . , n

The scalar step-size s is defined as:

s = π(ZUB − ZCLB)∑n

j=1 G2
j

where ZUB is the upper bound (that corresponds to the best primal feasible solution found),
ZCLB is the current lower bound (associated with the solution of the previous relaxation
problem), and π is a user-defined step-size parameter initialized at a certain value (e.g. 2)
and reduced by half when a certain number of successive iterations of the subgradient search
do not improve the lower-bound. Hence, if at iteration k, the vector of weights wk is used,
we determine the vector for the next iteration (k + 1) as

w(k+1) = wk + sG.

Notice that in the present setting the memory structures guiding the method correspond to
the surrogate weighting vector comprising the gap between primal and dual solution values,
the number of iterations since the last improvement of the best lower bound, and the position
of the previous surrogate dual solution to the primal feasible space (expressed by the degree
of violation of each of the relaxed constraints).

7 Adaptive solution combination method

The improvement component of the adaptive projection method constitutes one thread for
reaching enhanced primal solutions through linkages between primal and dual information.
Advanced RAMP designs include a number of additional possibilities to generate multiple
search threads between primal and dual spaces as well as within each individual space, both
encompassing the integration of primal-dual adaptive memory structures.

Although the surrogate relaxation approach in the dual side has the ability to integrate
information extracted from individual constraints, each item of information generated in the
dual component is represented in a single solution that results from solving the associated

672 Ann Oper Res (2010) 181: 661–681

surrogate problem (and the application of the complementary projection method). These so-
lutions may be viewed as single memory structures that can be integrated to create more
complex compound memory structures. In our implementation, this is accomplished by ex-
tending the primal component with scatter search through generating weighted combina-
tions of these solutions (and so their attributes) to create new composite solutions. Since the
RAMP method creates composite memory structures from both the primal and dual spaces
we employ very simple implementations of the tabu search and scatter search methods. This
favors the alternation between the primal and dual searches in place of performing exten-
sive searches by the improvement and solution combination methods. In order to distinguish
versions of the method using single memory structures from those using composite memory
structures, we call the latter a Primal-Dual RAMP (PD-RAMP).

The PD-RAMP algorithm specifically extends the basic RAMP algorithm by maintain-
ing a reference set of several solutions instead of only the current best solution. To ensure
proper diversification, the reference set RS is organized to contain two distinct subsets B

and D, representing respectively the subsets of high-quality and diverse solutions, hence
RS = B ∪ D.

The consideration of multiple primal solutions entails two extra steps involved in com-
bining the reference solutions and improving the corresponding offspring. Let C(Xt) be the
cost of a solution Xt in a selected subset E ⊆ RS, r = |E|, and let H(E) denote the convex-
hull of E. We generate offspring solutions X ∈ H(E) represented as X = ∑r

t=1 λtXt with∑r

t=1 λt = 1 and λt ≥ 0 (t = 1, . . . , r), where the multiplier λt represents the weight as-
signed to the solution Xt ∈ E and is computed by

λt = 1/C(Xt)∑r

t=1(1/C(Xt))

By this formula the better (lower cost) solutions receive higher weight than less attractive
(higher cost) solutions. The score of each variable xij relative to the solutions in E is ob-
tained by computing ϕ (xij) = ∑r

t=1(λtx
t
ij), where xt

ij = 1 if xij is an arc in the solution Xt

and xt
ij = 0 otherwise. Finally, as variables are required to be binary, the value is obtained

by rounding its score to give xij = �ϕ(xij) + 1/2�.
We consider groups of subsets E of cardinality r = 2,3, and 4, so that the first group

contains all combinations of two different solutions in the reference set, and the other two
groups are created recursively by augmenting each subset E of r solutions with the best
solution X ∈ RS\E to form a subset E of size r + 1. Solutions in each subset are then
combined using the foregoing solution combination method. As with the relaxation method,
the offspring resulting from solutions combination are not expected to be feasible for the
CMST problem, hence these solutions are then subjected to projection and improvement
method for possible enhancement.

8 The RAMP algorithm

Our RAMP algorithm arises by integrating the aforementioned procedures with a relax-and-
cut dual solution approach. The general structure of the RAMP and PD-RAMP algorithms
is presented in Sect 8.1. Section 8.2 provides the details of the procedures implementing
each of the component methods. Section 8.3 discusses problem reduction techniques used
in the implementation.

Ann Oper Res (2010) 181: 661–681 673

8.1 The algorithms

Algorithm RAMP
Repeat the following steps until the maximum number of failures to update the reference set
(i.e. the best upper bound) is reached:

1. Perform Adaptive Weighting Update Method. If the optimal solution was found exit.
2. Perform Adaptive Memory Relaxation Method.
3. Perform Adaptive Memory Projection Method.

End Repeat

Algorithm PD-RAMP
Repeat the following steps until both Dual and Primal fail to update the reference set:

Dual:
Repeat the following steps until the maximum number of failures to update the refer-
ence set (i.e. the best upper bound) is reached:

D1. Perform Adaptive Weighting Update Method.
If the optimal solution was found stop the algorithm.

D2. Perform Adaptive Memory Relaxation Method.
D3. Perform Adaptive Memory Projection Method.

End Repeat
End Dual

Primal:
Repeat the following steps until the maximum number of failures to update the refer-
ence set is reached:

P1. Perform Adaptive Solution Combination Method
P2. Perform Adaptive Memory Projection Method

End Repeat
End Primal

End Repeat

8.2 The algorithm procedures

8.2.1 Procedure adaptive weighting update method

If no surrogate problem has been solved yet, set all surrogate weights equal to 1 and end
the procedure. Otherwise, using the surrogate solution of the last surrogate problem solved,
check for violations of the flow-conservation constraints (9) and implicitly generate the new
set of special bin-packing cuts associated with possible violations of inequalities (13). If no
violation is found and the integrality constraints (10) are also satisfied, end the procedure—
the solution is optimal for the CMST. Otherwise compute new surrogate weights using sub-
gradient optimization.

8.2.2 Procedure adaptive memory relaxation method

Given the vector of nonnegative weights associated with the primal constraints to be relaxed,
form a linear combination of these constraints to create a surrogate constraint which, along

674 Ann Oper Res (2010) 181: 661–681

with the selected set of cutting planes and the relaxation of the integrality constraints, cre-
ates the corresponding surrogate problem. Solve the surrogate problem to optimality, thus
obtaining a lower bound on the objective function value of the original CMST problem. Up-
date the best lower bound if the solution of the surrogate problem improves the current best
lower bound. Make the surrogate solution as the only solution in the working solution list.

8.2.3 Procedure adaptive memory projection method

Repeat the following procedure for each solution in the working solution list: Subject the
solution to projection and possible improvement, creating an enhanced primal feasible solu-
tion that is locally optimal. If the objective function value for the original problem produced
by this solution is the best found so far by the algorithm, it is maintained as the best upper
bound. Similarly, this new solution is added to the reference set if the set does not contain
the designated number of elements or if the evaluation of the new solution is higher than that
of the lowest evaluation solution in the set based upon the high-quality or diversity criterion.
Update the number of failures to update the reference set.

8.2.4 Procedure adaptive solution combination method

Subject the solutions in the reference set to subset generation and solution combination and
create a working solution list of these offspring solutions.

8.3 Problem reduction

Problem reduction techniques have been proposed for the CMST to eliminate variables
(arcs) that do not belong to an optimal solution (see, e.g., Malik and Yu 1993). The arc elim-
ination techniques used in the dual, the neighborhood search of the improvement method
and the solution combination component of the scatter search make use of the following
logical implications: If c0j∗ = min{c0j : j ∈ V }, arc (0, j ∗) is essential and hence arcs from
all the other nodes to j ∗ can be eliminated; for a non-root node j if c0j = min{cij : i ∈ V0},
the arc (0, j) can be included in the optimal solution, again allows us to eliminate arcs from
all the other nodes to j ; finally, for any two non-root nodes i and vj , if cij ≥ max{c0i , c0j },
then arc (i, j) can be eliminated.

9 Computational experiments

The classical set of benchmark CMST problems from the OR-Library archive was used to
gauge the performance of RAMP and PD-RAMP algorithms. Both algorithms were coded
in C++ and tests were carried out on a desktop computer with an Intel Pentium P4 proces-
sor, 2 GB of RAM and running Windows XP professional. The CPLEX 8.1 LP solver was
invoked as a subroutine, using the API Callable Library, to provide optimal solutions for the
surrogate problems.

Extensive computational analysis was performed on problems of different type, size, and
arc capacity. The TC and TE test sets contain homogeneous demand instances of 40 and
80 nodes while the CM test set contains heterogeneous demand instances of sizes 50, 100,
and 200 nodes. All the problems are defined on complete graphs with costs represented by
Euclidean distances between nodes. Known optimum solutions and best known solutions
were obtained from the approaches due to Uchoa et al. (2008), Ahuja et al. (2001, 2003),
and from Amberg et al. (1996) as reported in Patterson et al. (1999).

Ann Oper Res (2010) 181: 661–681 675

Table 1 Summary of results for 40-node instances

Problem n Q BKS PD-RAMP RAMP

BSF RPD CPU BSF RPD CPU

tc40-2 40 3 717 717 0.00 23 719 0.28 9

te40-1 40 3 1190 1190 0.00 96 1191 0.08 50

te40-4 40 3 1132 1134 0.18 24 1134 0.18 30

te40-5 40 3 1104 1104 0.00 35 1106 0.18 31

te40-8 40 3 1181 1181 0.00 398 1183 0.17 7

te40-9 40 3 1090 1090 0.00 114 1092 0.18 10

te40-10 40 3 1079 1079 0.00 33 1082 0.28 17

te40-1 40 5 830 830 0.00 240 835 0.60 39

te40-1 40 5 797 797 0.00 50 801 0.50 43

te40-8 40 5 827 827 0.00 53 832 0.60 55

te40-9 40 5 779 780 0.13 13 780 0.13 12

te40-1 40 10 596 596 0.00 87 598 0.34 31

te40-5 40 10 572 572 0.00 93 574 0.35 101

te40-7 40 10 591 591 0.00 102 593 0.34 75

te40-8 40 10 610 610 0.00 70 612 0.33 23

Average 0.02 95.4 0.30 35.5

Overall Average (60 Instances) 0.01 33.6 0.08 17.9

All the results were obtained in specified time limits found empirically to be the best
compromise between computation time and solution quality for different problem types and
sizes. A similar stopping criterion has also been used in the current state-of-the-art algorithm
by Ahuja et al. (2003), denoted here by AOS. For the sake of comparative analysis we have
run AOS on the same computer as our RAMP and PD-RAMP algorithms. AOS found all
optimal solutions within 1000 seconds for 40-node instances and within 2000 seconds for
50- and 80-node instances. In general, RAMP and PD-RAMP algorithms require longer
running times to find the best solutions or stabilize convergence; hence we extended the cut-
off times for these algorithms to 2000 seconds for 40-node instances, and 3000 seconds for
50- and 80-node instances. Because the 100-node instances are significantly more difficult
and the algorithms have different convergence rates for each instance, we report results at
selected time intervals that were deemed relevant for the analysis.

For the 40-node instances both RAMP and PD-RAMP algorithms ran very fast. The
(dual) RAMP algorithm found the optimal solution in 45 of the 60 instances with an average
running time of 18 seconds. The PD-RAMP algorithm proved more effective, finding the
optimal solution for all but 2 of the 60 instances with an average running time of 34 seconds.
The relative average percent deviation is very small, being 0.00 for AOS, 0.01 for PD-
RAMP, and 0.08 for RAMP. A summary of these results is presented on Table 1. Specifically,
for each instance where an algorithm failed to find the optimal solution, we report the best
known solution (BKS) from the literature, the best solution found (BSF) by the algorithms,
the associated relative percent deviation (RPD) above BKS, and the computation time (CPU)
in seconds for the algorithm to find its minimum cost solution. We also provide averages of
solution quality and running times over the whole set of problems tested. Similar information
is provided in the remaining tables used in the analysis.

676 Ann Oper Res (2010) 181: 661–681

Table 2 Results for 80-node homogeneous demand problems (30 instances)

Problem n Q BKS PD-RAMP RAMP

BSF RPD CPU BSF RPD CPU

tc80-1 80 5 1099 1100 0.09 139 1114 1.36 99

tc80-2 80 5 1100 1102 0.18 1272 1106 0.55 166

tc80-3 80 5 1073 1073 0.00 155 1079 0.56 178

tc80-4 80 5 1080 1080 0.00 1621 1091 1.02 215

tc80-5 80 5 1287 1287 0.00 426 1288 0.08 194

tc80-1 80 10 888 888 0.00 146 890 0.23 102

tc80-2 80 10 877 877 0.00 21 877 0.00 20

tc80-3 80 10 878 878 0.00 46 878 0.00 45

tc80-4 80 10 868 868 0.00 12 868 0.00 7

tc80-5 80 10 1002 1002 0.00 111 1002 0.00 117

tc80-1 80 20 834 834 0.00 48 834 0.00 48

tc80-2 80 20 820 820 0.00 2 820 0.00 3

tc80-3 80 20 828 828 0.00 2 828 0.00 3

tc80-4 80 20 820 820 0.00 4 820 0.00 3

tc80-5 80 20 916 916 0.00 5 916 0.00 3

Average TC 0.02 267.3 0.25 80.2

te80-1 80 5 2544 2548 0.16 908 2554 0.39 641

te80-2 80 5 2551 2557 0.24 2965 2568 0.67 653

te80-3 80 5 2612 2620 0.31 2340 2631 0.73 857

te80-4 80 5 2558 2558 0.00 2281 2581 0.90 785

te80-5 80 5 2469 2469 0.00 2301 2483 0.57 660

te80-1 80 10 1657 1671 0.84 1298 2674 1.03 1263

te80-2 80 10 1639 1646 0.43 1642 1646 0.43 1240

te80-3 80 10 1687 1689 0.12 1370 1712 1.48 1406

te80-4 80 10 1629 1629 0.00 1276 1656 1.66 1530

te80-5 80 10 1603 1614 0.69 1199 1625 1.37 1294

te80-1 80 20 1275 1277 0.16 1916 1279 0.31 2198

te80-2 80 20 1224 1228 0.33 2604 1228 0.33 2311

te80-3 80 20 1267 1267 0.00 2035 1267 0.00 2300

te80-4 80 20 1265 1265 0.00 1766 1265 0.00 2140

te80-5 80 20 1240 1240 0.00 1739 1240 0.00 2273

Average TE 0.22 1842.7 0.66 1436.7

Overall Average 0.11 1095.2 0.46 755.3

Table 2 reports detailed results for larger 80 node TC and TE instances. The table shows
that the algorithms’ performance is relatively better on TC instances than on TE instances.
We conjecture that the location of the root node at one extreme of the node distribution
space in TE instances, as opposed to being located around the center as in TC instances,
may affect the effectiveness of a candidate list that relies on nearest neighbor strategies
as in our improvement method. It happens that the candidate lists tend to be larger for TE
instances, to account for possible deficiencies of the nearest neighbor strategy in determining

Ann Oper Res (2010) 181: 661–681 677

Table 3 Results for 50-node heterogeneous demand problems (15 instances)

Problem n Q BKS PD-RAMP RAMP

BSF RPD CPU BSF RPD CPU

cm50r1 49 200 1098 1104 0.55 1850 1115 1.55 924

cm50r2 49 200 974 980 0.62 874 984 1.03 1438

cm50r3 49 200 1186 1186 0.00 1668 1201 1.26 197

cm50r4 49 200 800 800 0.00 314 804 0.50 259

cm50r5 49 200 928 936 0.86 1400 940 1.29 788

cm50r1 49 400 679 679 0.00 2974 681 0.29 762

cm50r2 49 400 631 631 0.00 746 635 0.63 383

cm50r3 49 400 732 732 0.00 1079 739 0.96 697

cm50r4 49 400 564 564 0.00 387 564 0.00 51

cm50r5 49 400 611 612 0.16 254 612 0.16 245

cm50r1 49 800 495 495 0.00 253 495 0.00 247

cm50r2 49 800 513 513 0.00 719 513 0.00 710

cm50r3 49 800 532 532 0.00 98 532 0.00 93

cm50r4 49 800 471 471 0.00 13 471 0.00 17

cm50r5 49 800 492 492 0.00 129 492 0.00 327

Average 0.15 850.5 0.51 475.9

the most appropriate candidates. We conjecture that this may likewise affect the efficiency
of the algorithm in those instances. Although the simple RAMP algorithm finds solutions of
very high quality, PD-RAMP is faster in finding solutions of similar quality and is globally
more effective.

Tables 3 and 4 report results for CM instances containing 50 and 100 nodes, respectively.
Solutions for the largest 200-node CM instances of the test bank could not be obtained due
to insufficient memory. As noted earlier, our base CMST formulation has the advantage of
containing only 2n constraints, which likely contributes to the effectiveness of our surrogate
dual model. On the other hand, the fact that the number of variables has a quadratic term
in n may limit the size of the problems that can be addressed. Similarly, the constant term
Q in the number of variables may also have an important effect on the space complexity in
problems with very large arc capacity.

For comparative purposes, Table 4 also includes results for the AOS algorithm. In these
experiments we allow the algorithms to run for a maximum of 86,000 seconds and report
solutions whenever an algorithm found an improved solution in the past 1000 seconds rela-
tive to the corresponding times. Dashes in the table mean that the solution has not changed
in the corresponding intervals.

The simple RAMP algorithm, although still effective and competitive with AOS with
respect to the average of solution quality, cannot keep up with the PD-RAMP algorithm for
the larger 100-node instances. AOS does slightly better than RAMP and PD-RAMP on the
50-node instances, but PD-RAMP performs better than these algorithms on the 100-node
instances.

Specifically, for the 15 small 50-node instances AOS did better than PD-RAMP on 4
instances and did equally well on the remaining 11 instances. For the more challenging
100-node instances, however, PD-RAMP outperforms AOS on 3 out of the 5 instances, and
equaled AOS on the only instance where this algorithm was capable of finding an optimal

678 Ann Oper Res (2010) 181: 661–681

Table 4 Results for 100-node heterogeneous demand problems (5 instances)

Problem n Q BKS CPU AOS PD-RAMP RAMP

BSF RPD BSF RPD BSF RPD

cm100r1 99 200 509 1000 516 1.38 509 0.00 527 3.54

8000 – – – – 520 2.16

18,000 – – – – 519 1.96

26,000 – – – – 518 1.77

29,000 – – – – 509 0.00

cm100r2 99 200 584 1000 596 2.05 621 6.34 606 3.77

2000 593 1.54 615 5.31 – –

4000 – – 612 4.79 604 3.42

6000 – – 609 4.28 – –

7000 – – 607 3.94 – –

8000 – – 602 3.08 – –

9000 – – 599 2.57 602 3.08

13,000 – – 594 1.71 600 2.74

23,000 – – – – 598 2.40

32,000 – – – – 597 2.23

40,000 – – – – 595 1.88

72,000 – – 591 1.20 – –

cm100r3 99 200 540 1000 541 0.19 574 6.30 569 5.37

2000 – – 564 4.44 568 5.19

3000 – – – – 562 4.07

7000 – – – – 560 3.70

8000 – – 562 4.07 555 2.78

9000 – – 551 2.04 – –

12,000 – – 548 1.48 – –

20,000 – – – – 547 1.30

26,000 – – 546 1.11 – –

27,000 – – 542 0.37 – –

31,000 – – – – 546 1.11

cm100r4 99 200 435 1000 437 0.46 455 4.60 443 1.84

2000 435 0.00 437 0.46 – –

3000 – – – – 442 1.61

7000 – – 435 0.00 – –

11,000 – – – – 439 0.92

28,000 – – – – 435 0.00

cm100r5 99 200 418 1000 425 1.67 436 4.31 432 3.35

3000 421 0.72 436 4.31 – –

4000 – – 431 3.11 – –

5000 – – – – 427 2.15

6000 – – 428 2.39 – –

9000 – – – – 426 1.91

10,000 – – 423 1.20 426 1.91

19,000 – – – – 421 0.72

Ann Oper Res (2010) 181: 661–681 679

Table 4 (Continued)

Problem n Q BKS CPU AOS PD-RAMP RAMP

BSF RPD BSF RPD BSF RPD

31,000 – – 422 0.96 – –

32,000 – – 421 0.72 – –

33,000 – – 420 0.48 – –

40,000 – – 419 0.24 – –

53,000 420 0.48 419 0.24 – –

78,000 – – 418 0.00 – –

Average RPD for BSF 0.72 0.31 0.74

Total Time to BSF 59000 185000 147000

solution. PD-RAMP found 3 optimal solutions. This resulted in an average percent deviation
of 0.72 for AOS and 0.31 for PD-RAMP. Also PD-RAMP is usually faster than AOS in
finding similar or improved solutions for several of these instances. Notably, PD-RAMP
finds the optimal solution for cm100r1 in less than 1000 seconds while in this time AOS
could only find a solution that is 1.38% away from optimality and was unable to improve
it in another 28,000 seconds, which was sufficient for the simple RAMP algorithm to also
find the optimal solution. Likewise, for cm100r5 AOS took about 20,000 seconds more than
PD-RAMP to find a solution of similar quality, and then could not improve it within another
33,000 seconds. In addition, PD-RAMP reached the optimal solution in 8,000 seconds less
than the time limit given to AOS. On the other hand, AOS performed exceedingly well on
the cm100r3 instance by reaching a solution that is 0.19% above the optimum in less than
1,000 seconds, while it required about 27,000 seconds to PD-RAMP to find a solution 0.37%
above the optimum. On average, for these five larger instances PD-RAMP required about 3
times longer than AOS to find its best solutions, but this extra time seems well justified by
the superior solution quality produced by PD-RAMP.

Overall we observe that while PD-RAMP often (though not always) consumed more
time than AOS to reach the point where it found a superior solution, the time necessary for
PD-RAMP to find its best solutions in each group of problems is on average significantly
less than the time limit imposed on the two methods. Though PD-RAMP is slightly better
on average, the solution quality achieved by this method is fairly comparable to that of
AOS. While AOS converges very quickly to a good solution, often optimal for the smaller
problems, AOS has trouble finding further improvements for the larger instances even under
extensive running times. PD-RAMP, on the other hand, is very robust, providing sustained
improvement and demonstrating a high likelihood of finding progressively better solutions
for larger and more complex problems as the allotted solution time is increased.

10 Summary and conclusions

The RAMP approaches proposed in this study for the CMST are based on two components.
The first consists of a relaxation approach using surrogate constraints and associated cutting
planes. The second component blends heuristic projection with improvement methods that
take advantage of adaptive memory. The preliminary form of our RAMP procedure, the
dual RAMP algorithm, couples surrogate dual information with a simple tabu approach

680 Ann Oper Res (2010) 181: 661–681

based on classical neighborhood structures. This method proved superior to all previous
metaheuristic approaches except the very large-scale neighborhood (VLSN) approach of
Ahuja et al. (2003). Our more advanced primal-dual RAMP algorithm, which enhances the
primal approach with a scatter search procedure, compares very well against VLSN on small
to medium size problems and is more effective in solving larger and more complex instances.
These results encourage the development of additional problem reduction techniques for the
surrogate dual to allow for the solution of large-scale CMST instances.

Acknowledgements We thank Ravindra Ahuja, James Orlin, and Dushyant Sharma for making their AOS
code available to us. We are also indebted to two anonymous referees whose comments significantly helped
improving the presentation of our paper. Part of this research was developed when Cesar Rego was visiting
MIT Sloan School of Management.

References

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multi-exchange neighborhood search structures for the
capacitated minimum spanning tree problem. Mathematical Programming, 91, 71–97.

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2003). A composite very large-scale neighborhood structure for the
capacitated minimum spanning tree problem. Operations Research Letters, 31, 185–194.

Amberg, A., Domschke, W., & Voß, S. (1996). Capacitated minimum spanning trees: algorithms using intel-
ligent search. Combinatorial Optimization: Theory and Practice, 1, 9–39.

Caserta, M. (2007). Tabu search-based metaheuristic algorithm for large-scale set covering problems. In
K. F. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjar, R. F. Hartl, & M. Reimann (Eds.), Meta-
heuristics: progress in complex systems optimization (pp. 43–63). Berlin: Springer.

Elias, D., & Ferguson, M. J. (1974). Topological design of multipoint teleprocessing networks. IEEE Trans-
actions on Communications, 22, 1753–1762.

Esau, L. R., & Williams, K. C. (1966). On teleprocessing system design. Part II. A method for approximating
the optimal network. IBM Systems Journal, 5, 142–147.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-
completeness. New York: Freeman.

Gavish, B. (1982). Topological design of centralized computer networks: formulations and algorithms. Net-
works, 12, 355–377.

Gavish, B. (1983). Formulations and algorithms for the capacitated minimal directed spanning tree problem.
Journal of ACM, 30(1), 118–132.

Gavish, B. (1985). Augmented Lagrangian based algorithms for centralized network design. IEEE Transac-
tions on Communications, COM-33, 12, 1247–1257.

Gavish, B. (1991). Topological design telecommunications networks: local access design methods. Annals of
Operations Research, 33, 17–71.

Glover, F. (1989a). Tabu search. Part I. ORSA Journal on Computing, 1, 190–206.
Glover, F. (1989b). Tabu search. Part II. ORSA Journal on Computing, 2, 4–32.
Glover, F. (1996). Tabu search and adaptive memory programming: advances, applications and challenges. In

R. Barr, R. Helgason, & J. Kennington (Eds.), Interfaces in computer science and operations research
(pp. 1–75). Norwell: Kluwer Academic.

Glover, F. (2005). Adaptive memory projection methods for integer programming. In C. Rego, & B. Alidaee
(Eds.), Metaheuristic optimization via memory and evolution (pp. 425–440). Norwell: Kluwer Acad-
emic.

Glover, F., & McMillan, C. (1986). The general employee scheduling problem: an integration of management
science and artificial intelligence. Computers and Operations Research, 13(4), 563–593.

Gouveia, L. (1995). A 2n constraint formulation for the capacitated minimal spanning tree problem. Opera-
tions Research, 43, 130–141.

Grünert, T. (2002). Lagrangian tabu search. In C. C. Ribeiro & P. Hansen (Eds.), Essays and surveys in
metaheuristics (pp. 379–397). Norwell: Kluwer Academic.

Hall, L. A. (1996). Experience with a cutting plane approach for the capacitated spanning tree problem. ORSA
Journal on Computing, 8, 219–234.

Karwan, M. H., & Rardin, R. L. (1984). Surrogate dual multiplier search procedures in integer programming.
Operations Research, 32(1), 52–69.

Klincewicz, J. G., Luss, H., & Yan, D. C. K. (1998). Designing tributary networks with multiple ring families.
Computers. Operations Research, 25(12), 1145–1157.

Ann Oper Res (2010) 181: 661–681 681

Lorena, L. A. N., & Narciso, M. G. (1999). Lagrangian/surrogate relaxation for generalized assignment prob-
lems. European Journal of Operational Research, 123, 325–332.

Malik, K., & Yu, G. (1993). A branch and bound algorithm for the capacitated minimum spanning tree
problem. Networks, 23, 525–532.

Mathew, F., & Rego, C., (2006). Recent advances in heuristics for the capacitated minimum spanning tree
problem. In Proceedings of the Decision Sciences Institute (DSI), San Antonio, TX (pp. 31021–31026).

Orús, R. (2005). Two slightly-entangled NP-complete problems. Quantum Information and Computation,
5(6), 449–455.

Papadimitriou, C. (1978). The complexity of the capacitated tree problem. Networks, 8, 217–230.
Patterson, R., Pirkul, H., & Rolland, E. (1999). Memory adaptive reasoning for solving the capacitated mini-

mum spanning tree problem. Journal of Heuristics, 5, 159–180.
Polyak, B. T. (1969). Minimization of unsmooth functionals. USSR Computational Mathematics and Mathe-

matical Physics, 9, 14–29.
Rego, C. (2005). RAMP: A new metaheuristic framework for combinatorial optimization. In C. Rego & B.

Alidaee (Eds.), Metaheuristic optimization via memory and evolution: tabu search and scatter search
(pp. 441–460). Norwell: Kluwer Academic.

Sharaiha, Y. M., Gendreau, M., Laporte, G., & Osman, I. H. (1997). A tabu search algorithm for the capaci-
tated shortest spanning tree problem. Networks, 29, 161–171.

Uchoa, E., Fukasawa, R., Lysgaard, J., Pessoa, A., de Aragão, M. P., & Andrade, D. (2008). Robust branch-
but-and-price for the capacitated minimum spanning tree problem over a large extended formulation.
Mathematical Programming, Series A, 112(2), 443–472.

Yagiura, M., Kishida, M., & Ibaraki, T. (2006). A 3-flip neighborhood local search for the set covering
problem. European Journal of Operational Research, 172, 472–499.

Zhang, N. (1993). Facet-defining inequalities for minimum spanning trees. Master thesis, Princeton Univer-
sity, Princeton, New Jersey

	RAMP for the capacitated minimum spanning tree problem
	Abstract
	Introduction
	Previous approaches for CMST
	The RAMP method: conceptual foundations and overview
	Adaptive memory relaxation method
	Generalized 2n-constraint formulation for CMST
	The basic surrogate constraint relaxation
	An enhanced surrogate constraint relaxation

	Adaptive memory projection method
	Projection
	Improvement

	Adaptive weighting update method
	Adaptive solution combination method
	The RAMP algorithm
	The algorithms
	The algorithm procedures
	Procedure adaptive weighting update method
	Procedure adaptive memory relaxation method
	Procedure adaptive memory projection method
	Procedure adaptive solution combination method

	Problem reduction

	Computational experiments
	Summary and conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

